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Abstract

Steady-state free precession (SSFP) is used today in a form similar to other rapid sequences like fast spin echo (FSE) where a

large longitudinal magnetization is present at the beginning of the train of excitations. This results in a transient behavior which

impedes any measurement before the steady state is established. Several solutions have been proposed to stabilize the signals more

quickly. Starting from a simplified model of signal generation, and by a suitable change of reference frame, this paper justifies

theoretically the linear ramp-up proposed by Nishimura and Vasanawala (p. 301, 8th Annual Proceedings of ISMRM, 2000,

Denver). This linear ramp-up can be generalized into a one giving less oscillatory residues. The solution is efficient in the sense that it

does not require nutation angles larger than the one used during the stabilized period. Also, this solution is robust because it scales

up or down nicely and is thus insensitive to B1 variations.

� 2003 Elsevier Science (USA). All rights reserved.
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1. Introduction

Typically the steady state free precession (SSFP) se-

quence has been used in a 3D mode with a steady state

established well before the beginning of the signal ac-

quisition. Classically the sequence was also used in a

dispersed (or crushed) mode where a large constant

gradient integral is created in the interval TR (repetition
time) between two consecutive pulses. Recently new

development has been generated by the rediscovery [1]

of the true-FISP method [2] (or refocused SSFP) where

all the gradient integrals between two consecutive exci-

tations are nulled. This results in a large signal, but also

in a sensitivity to chemical shift or main field homoge-

neity, and it is the reason why the sequence was redis-

covered only when the progress in gradient technology
could shorten the repetition time below a few millisec-

onds. The high contrast obtained between fluids and

organs renders the sequence suitable for cardiac imaging

[3,4], and one would certainly prefer in this context to

use a 2D mode because of the shorter minimum acqui-

sition time it permits. Unhappily the time necessary to
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reach the dynamic equilibrium by relaxation only is

prohibitive. This has been addressed by relatively simple

solutions [1], but in the recent years a more elaborate

solution [5,6] based on a sequence of variable pulse

angles determined by the Shinnar–Le Roux algorithm

[7] has been proposed. The aim of this preparation is to

transfer, for each resonance frequency, the initial lon-

gitudinal magnetization toward its steady state position.
Putting aside the difficulty for a non-specialist to un-

derstand this sort of design, it is not certain that this

solution is robust against B1 gain setting errors or lack

of homogeneity as pointed out in [5]. There is another

interesting approach presented in [8] which uses a simple

linear ramp up of the nutation angle. The linear system

framework used by the authors of [8] to introduce their

proposal is questionable in a context of nutation angles
ranging from 0� to 60� in the course of 10 pulses, that is

to say with some magnetization elements undergoing

more than one complete rotation. One will see that one

can justify the solution of [8] by putting oneself in a new

reference frame where a linear approximation becomes

valid. Once this is done, the linear ramp is justified in a

large part, but also a more efficient solution naturally

comes to mind, based on classical linear filter design.
The end result is not as good as the best theoretically
reserved.
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imaginable SLR design, but is very insensitive to B1

setting errors.

The solution proposed here is relatively easy to de-

velop once a model for the signal generation in SSFP or

FSE has been introduced. Despite the fact that the aim

of this article is the stabilization of SSFP, it will give

some results or remarks pertaining to FSE and also in-

troduce some simplified equations describing relaxation

in both type of sequences. These simplified equations are
valid only when a set of Bloch equations with a three

dimensions state vector representing magnetization is

acceptable. These Bloch equations describe the longi-

tudinal and transversal processes empirically, by a first

order process (with time constant T1 and T2). In addi-

tion, the simplified model is valid only if the transverse

relaxation time constant T2 is long in comparison to the

time interval separating two RF pulses. There is no
question to describe exchange, coupling, or diffusion in

strong local fields and certainly not any solid NMR

phenomenon with this simple model. Flow, or move-

ment is not taken into account in this article. Although

it is made use of spinors when deriving the rotation from

echo to echo, this is only used as an efficient mathe-

matical tool for describing (classical) rotations and does

not refer to any quantum mechanics formalism. The
model so obtained is able to approximately predict the

magnetization behaviour when the excitation is a train

of constant nutation pulses. In a subsequent step, a

simplified model of the magnetization dynamics, appli-

cable when the nutation angle of the pulses varies

slowly, is developed. This gives some insight of what a

true, numerical, resolution of the Bloch equations would

permit to obtain. This is in order to be able to synthetize
nutation angles modulations which generate stable echo

signals. To verify this synthesis step, the original, non-

simplified Bloch equation will be used.
2. Simple model of signal generation in SSFP

The only rigorous approach in presence of relaxation
processes is to proceed as in [5]: after having charac-

terized the magnetization M by a three real values

M ¼ ðx; y; zÞt one writes the linear invariant dynamic

system (represented by a 3� 3 real matrix) which links

the value of the state vector Mk�1 before the kth pulse to

the value Mk it has before the next pulse:

Mk ¼ AMk�1 þ B. The matrix A represents first the suc-

cession of rotations applied by the cb0 and cb1 fields, the
cycle rotation, and secondly the transverse and longi-

tudinal relaxations. The vector B represents the longi-

tudinal recovery. One can choose a cycle beginning just

before one RF pulse and ending just before the next RF

pulse, but one may choose any other cycle of duration

one repetition time. We indeed note that knowing the

magnetization at one time in the precession interval
permits to know this magnetization everywhere in the
precession interval. Indeed the evolution is then a ro-

tation around the z axis, with a transverse relaxation and

a T1 recovery along z, and all these operations can be

easily written in an analytical form. Being a standard

stationary linear dynamic system of low order, this

system can be studied relatively easily and the equilib-

rium values can be found in analytical manner [9].

Nevertheless the rather complicate mathematical ex-
pression tends to impede the comprehension of the

physical phenomena. The complication comes from

the relaxation processes. In presence of relaxations the

magnetization tends towards a dynamic equilibrium

intermediary between the axis of the cycle rotation and

the axis z along which the longitudinal magnetization

recovers during each precession period. As pointed out

in [5] and as will be shown again here, for most condi-
tions, the equilibrium position is almost along the cy-

cle rotation axis. Thus a good strategy to accelerate the

convergence towards equilibrium is to transfer, by the

stabilization sequence, the large longitudinal magneti-

zation present at the beginning of the sequence along

this cycle rotation axis. It will then begin to decay in

magnitude towards its equilibrium value under the in-

fluence of the relaxation processes.

2.1. The cycle rotation

The stabilization sequence will rely essentially on the

model of the cycle rotation, which is the subject of this

section. Let us suppose that the repetition time TR is

equal to 2T . Note that [5,10] use the notation TE in

place of T , with TE ¼ TR=2, but we think it can be
misleading in reference to the Fast Spin Echo sequence

where TE refers to the time separating the first echo

from the flip pulse, which is 2T . One of the aims of the

present article is to make the link between the SSFP

sequence and the Fast Spin Echo sequence and actually

to consider them as the same sequence, only with a dif-

ferent initial condition. Hence the need to alleviate any

confusion and to forget altogether the notation TE and
use a time unit T defined as half the repetition time in

SSFP or as half the echo spacing in FSE. One will

consider the cycle starting from the center of one pre-

cession interval to the center of the next precession in-

terval, i.e., the cycle would begin and end at the position

of echo in an FSE experiment (Fig. 1). One then char-

acterizes the precession by the angle �x imposed to a

given magnetization by all the longitudinal fields B0,
whether due to gradients or main field inhomogeneity

during a lapse of time T (the minus sign in front of x is

to conform to Shinnar–Le Roux algorithm notations

and is justified by the fact that the gyromagnetic coef-

ficient c of the proton is negative). This angle of pre-

cession is, as usual, measured in the rotating frame

corresponding to the demodulation carrier. The nuta-



Fig. 1. This article considers a long train of constant RF pulses of nutation h and separated by 2T . Rather than considering a cycle from one RF pulse

to the next as is generally done in SSFP (bottom figure) we prefer to consider the cycle from the center of the precession period to center of the next

precession period, as is natural in Fast Spin Echo (top figure). Indeed SSFP and FSE are the same sequence but with different initial conditions. As in

[23] the nutation angle of the first few pulses will be varied; one note h1 the first nutation, h2 the second . . .M1 is the magnetization at the first

measurable echo. The symbols without suffix being reserved for the constant train which follows the stabilization sequence.
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tion imposed by the RF pulse is called h, and is along the

axis x of the transverse plane. Neglecting relaxation, one

writes the rotation from one echo to the next, first in the

form of symbolic rotation operator. One has first a

precession �x, followed by a nutation h, again followed

by a nutation �x, giving a resulting rotation

R ¼ Rzð�xÞRxðhÞRzð�xÞ: ð1Þ
In order to derive the numerical expression of this

rotation we prefer to use the spinor or SU2 formalism

[11–13], with the same notation as the one used in [14];
in this formalism a precession of angle �x is represented

by the matrix:

Qzð�xÞ ¼ expðjx=2Þ 0

0 expð�jx=2Þ

� �
; ð2Þ

and the nutation of angle h around x is represented by

QxðhÞ ¼
c �js
�js c

� �
; ð3Þ

with c ¼ cosðh=2Þ, s ¼ sinðh=2Þ. It is then a question of

elementary calculus to find the SU2 matrix representing
the cycle rotation (1):

Q ¼ c expðjxÞ �js
�js c expð�jxÞ

� �
: ð4Þ

One then uses the fact that one can put any SU2

matrix in the form

Q ¼ C1� jSrðnz; nxyÞ; ð5Þ
with C ¼ cosðX=2Þ and S ¼ sinðX=2Þ, X being the angle

of the rotation this matrix represents. The axis of the

rotation, given by its components nz along the axis z and
nxy its projection in the transverse plane, is found from

the matrix r (vector matrix or density matrix):

r ¼ nz n	xy
nxy �nz

� �
: ð6Þ

Isolating the real part of the diagonal elements of (4),

one obtains:

Q ¼ c cosðxÞ � j
�c sinðxÞ s

s c sinðxÞ

� �
: ð7Þ

And by identification between (7) and (5), (6) one find

that the rotation axis is parallel to the vector u! having

component uz ¼ c sinðxÞ along z and ux ¼ s along x.

After normalizing this vector, by dividing it by its norm,

one obtains:

nz ¼ �c sinðxÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2 cos2ðxÞ

p
;

nx ¼ s=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� c2 cos2ðxÞ

p
;

X ¼ 2 arccosðc cosðxÞÞ:
ð8Þ

Note that if the sign of the rotation angle were ir-

relevant one could prefer X ¼ 2 arcsinð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffip
s2 þ c2 sin2ðxÞ

¼ 2 arcsin j u!j. Also one important fact is that ny ¼ 0,

i.e., the cycle rotation axis is always in the ðx; zÞ plane.
This is what will greatly simplify the analysis and is the
reason why it is preferable to consider the cycle from

echo to echo.



Fig. 2. Top, the z and x components of the normalized rotation axis n!. Bottom left, the rotation angle. Bottom right, the representation of the

rotation axis, before normalization, u! for one nutation angle (here around 70�) and for some precession angles x as marked by the letters �a� to �e�
shown on the first graph. The first representation noted fan is conform to the graphs at top. In the representation noted bow-tie, the rotation axis has

been toggled to the opposite direction at x ¼ 
p=2, with a concomitant subtraction of p to the rotation angle. This way the rotation angle is always

positive (in fact greater or equal to h) and inferior to p. The rotation axis mimics somewhat the effective field for two constant, but opposite, RF

excitations centered at x ¼ 0 and x ¼ p.
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Fig. 2 summarizes these equations in graphic form,

for different nutation angles. Some key points are: for

x ¼ 0 the axis of rotation is along x and the angle of
nutation is h, for x ¼ p the nutation angle is �h; for
x ¼ p=2 or x ¼ �p=2 the rotation angle is X ¼ p along

an axis which is tilted away from, respectively, �z or z
by an angle h=2. The same axis of the rotation is ob-

tained twice for x and p � x. This is related to the fact

that one has considered the rotation angle X to be al-

ways positive, actually varying between h and 2p � h,
and a �mean value� around p. This representation has the
advantage to furnish continuous waveforms for nz, nx,
and X. It gives a graphical representation of the rotation

axis in a �fan� form as in Fig. 2. Another approach is to

constrain the rotation angle between �p and þp, and
changing abruptly the rotation axis to the opposite di-

rection at x ¼ p=2 and x ¼ �p=2 (where the rotation

angle attains 
p). This can be called the �bow-tie� rep-
resentation.

Without relaxation, the dynamic of the system is

easily studied by decomposing any magnetization M
!

k at

echo k along the axis of the rotation n! (this component

will stay constant) and the perpendicular plane spanned

by the original axis of the rotating frame y! and a third

vector, called v!, having components ð�nz; 0; nyÞ in the
x!; y!; z! frame. The magnetization fraction contained in

this plane ð y!; v!Þ undergoes a rotation by an angle X
between each echo. One will refer to this component of
magnetization by the term �perpendicular� component,

while one will call the component along n! the �parallel�
component, reserving the usual terms longitudinal and

transverse to the decomposition along the axis z! and the

plane x!; y! of the original frame. We will call the frame

defined by the vectors n!; y!; v! the cycle rotation frame.

2.2. Relaxation effects

The evolution equation without relaxation turns out

to be the backbone permitting an easy study of the re-

laxation in SSFP or FSE. During the precession periods

the relaxations processes tends to diminish the two

transverse components x; y with a time constant

T2 ¼ 1=x2 and the z component with a time constant

T1 ¼ 1=x2. That is to say, defining e1 ¼ expð�x1T Þ,
e2 ¼ expð�x2T Þ, and the diagonal matrix

E ¼
e2

e2
e1

2
4

3
5;

the transfer from echo k � 1 to echo k becomes:
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Mk ¼ AMk�1 ¼ ðEREÞMk�1: ð9Þ
When the transverse and longitudinal relaxations are

equal e1 ¼ e2 ¼ e there is no change in the eigenvectors

of the matrix A and the eigenvalues are multiplied by e.
The difficulty arises when x1 6¼ x2. It is shown in Ap-

pendix A that under the condition that x2T is not too

small and at least for a range of precession angle x ex-

cluding a small portion around x ¼ 0 and x ¼ p, the
eigenvectors are not very different from the non-relaxing
case (this was also noted in [5]). In addition, this ap-

pendix gives as an approximation of the relaxation rate

of the component parallel to the rotation axis n!:

xjj ¼ n2xx2 þ n2zx1: ð10Þ
One can use the following mnemonic: because

n2x þ n2z ¼ 1, one can consider n2x as being the proportion

of time the magnetization spends along x!, relaxing at

the rate x1, while n2z is the proportion of time the

magnetization is along z! relaxing at the rate x1. The

notation xjj could be replaced by the notation

x1q ¼ 1=T1q to relate it to the classical continuous re-
laxation along the effective RF field [15], which has

similar expression to Eq. (10).

The component in the ð y!; v!Þ plane relaxes at the

rate:

x? ¼ x2

2
þ n2xx1 þ n2zx2

2
: ð11Þ

Again one can consider the following mnemonic: the

perpendicular magnetization spends one half of the time
along y!, and one half of the time along v!, and the time

along v! is distributed in proportion n2x and n2z along z!
and x!.

Taking now into account the T1 recovery during the

precession periods, a constant vector parallel to z! is

added at the right member of the recursion (9) (see

Appendix B). But again, projecting the magnetization in

the cycle rotation frame, and under broad conditions,
Fig. 3. Longitudinal and transverse dynamic equilibrium magnetization, at

T2 ¼ 100ms, T ¼ 5ms (TR ¼ 10ms), for different nutation angles. This cur

visible difference between this curves and the one obtained by using the muc
one arrives at the fact that the perpendicular component
of the dynamic equilibrium is negligible, whereas the

parallel component has an algebraic length, noted m,
along n! which is

m ¼ nz
x1

xk
¼ nz

x1

n2xx2 þ n2zx1

: ð12Þ

Again this can be compared with the classical con-

tinuous expression in [15]. And the x; z components of
the equilibrium magnetization m n! are obtained by

scaling the components of the rotation axis nx; nz as gi-
ven by Eq. (8) by m in Eq. (12). Fig. 3 shows the result of

this operation for T ¼ 5ms, T1 ¼ 400ms, T2 ¼ 100ms

(these values are chosen to be able to compare with [5],

although typically the value of T should rather be in the

1.5ms range). The discrepancy between this result and

the full solution [9] could not be seen on this figure. Even
with T1 ¼ 700ms and T2 ¼ 40ms (heart muscle) the

discrepancy between the proposed simplified Eqs. (8)

and (12) and the full solution is only sensitive at low

nutation angle (below 30�) and only in a very limited

range of x around 0 and p.

2.3. Actively reducing the perpendicular component

Although interesting in its own sake the study of the

relaxation is not that important for the stabilization of

signal. The most important result from the previous

paragraph is that the axis of the rotation (or damped

rotation) is not changed significantly: it is shown here

that a good strategy is to put the magnetization rapidly

along that axis, whatever the relaxation effects, and then

let it relax at its own pace.
In standard, dispersed or crushed, sequences like FSE

or SSFP one measures the sum of all transverse mag-

netizations for all the precession angles x. It is known,

at least in the case of FSE, that even without relaxation

the signal is stabilized quite quickly. This is due to

the dispersion of rotation angles X with which the
echo time of a refocused SSFP, under relaxation with T1 ¼ 400ms,

ves where obtained by simulating the Bloch equations but there is no

h simpler model given by Eqs. (8) and (12).
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component perpendicular to the rotation axis oscillates.
Although each individual perpendicular component can

be very large (in some cases equal to the original mag-

netization) they tend after a while to disperse and the

global magnetization in one pixel becomes the sum of

only the parallel components. It is as if the dispersion

had produced a projection of the original magnetization

M0 on the local axis of the rotation, leaving only the

parallel component mk (of length nz) of the original
magnetization M0, see Fig. 4. Incidentally this is how

one can demonstrate that the signal of FSE is propor-

tional to sinðh=2Þ, a result which, to the knowledge of

the author, has never been demonstrated (see Appendix

B). This signal stabilization by projection and dispersion

seems to be the phenomenon used recursively in [16]. In

summary the phase dispersion plays a role very similar

to the one the relaxation plays, even when the latter one
is not present or not significant, and this phase disper-

sion stabilizes naturally the received signal. One can do
Fig. 4. Signal stabilization by phase dispersion in a non-refocused FSE

sequence the labels �c� and �g� in n!ðcÞ and n!ðgÞ refer to precession

angle values, as in the series �a� to �g� depicted in Fig. 2). The original

magnetization is along the x axis. Consider a precession angle of

x ¼ �p=2 with a rotation axis n!ðgÞ: the original magnetization is

broken up into a components parallel and perpendicular to the rota-

tion axis. The perpendicular part enter an oscillatory movement with a

rotation angle X, which in the considered case is p, putting the mag-

netization atM1 at time of echo 1. But this rotation angle X is spread in

the range �p, p and the oscillatory components experience a phase

dispersion which rapidly cancel out the overall signal they generate,

leaving only, in the case of crushed FSE, the constant signal generated

by the parallel components. The extremities of these components when

x varies in the 
p range is shown by the thin solid arc of circle

MkM0Mk. In case of a refocused FSE there would be only one definite,

but uncontrolled, value of x in one pixel and the only way to guarantee

the absence of oscillatory signal is to actively drive the original mag-

netization to a position parallel to the rotation axis (positions shown

by the wide arc of circle nðgÞM0nðcÞ).
the same analysis for the SSFP sequence (Fig. 5). Note
that according to Eq. (12) the relaxed equilibrium value

along the rotation axis, m, is in fact mk � ðx1=xkÞ and is

equal to the dispersed equilibrium value if T1 ¼ T2, but is
generally smaller. Now this beneficial action of disper-

sion, and actually the notion of dispersed equilibrium,

vanishes entirely in the case of a refocused sequence. If

the sequence is fully refocused there is only one definite

precession angle in each pixel and there is a single os-
cillating signal, with a well defined frequency X, gener-

ated by the perpendicular component. This signal can be

higher than the constant signal, and will not diminish

otherwise than by relaxation if nothing is changed in the

excitation sequence. The aim of the stabilization period

is to reduce as quickly and as thoroughly as possible the

perpendicular component of this magnetization. This

action has to be fast, lasting only some echo spaces, and
cannot rely on any relaxation process; hence this oper-

ation is necessarily a rotation for which at any interval k,
jMkj ¼ jM0j. The only way to eliminate the perpendicu-

lar component of Mk is to drive it towards the local

rotation axis n!, but this time keeping, almost by obli-

gation, its full magnitude. Thus at the end of the prep-

aration period, composed of p RF intervals, the

magnetization Mp must be Mp ¼ 
jM0j n!. In the case of
the SSFP sequence (see Fig. 5), because the original

magnetization is along z! and the ultimate position after

the relaxation process is also with z positive (see previ-

ous paragraph), the sign in the last equation is logically

signðnzÞ. The target magnetization at the end of the

preparation period is thus Mp ¼ signðnzÞ � n!. The loci
Fig. 5. Analysis similar to Fig. 4 can be applied to SSFP the labels �c�
and �g� in n!ðcÞ and n!ðgÞ refer to precession angle values, as in the

series �a� to �g� depicted in Fig. 2). This time the original magnetization

is along z. mk is the projection of the original magnetization onto the

rotation axis and is also the point towards which the magnetization m
will relaxed if T1 ¼ T2. For reducing rapidly the oscillation one must

put the magnetization, still with its full magnitude along the rotation

axis, i.e., along the bold arcs of circle noted Mk.
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of this target position for different precession angles x
are shown in Fig. 5 by the two bold arcs of circle (rep-

resenting the superior half of a bow-tie). And we high-

light this stabilized magnetization Mk to distinguish it

from the smaller dispersed mk equilibrium and from the

still smaller relaxed equilibrium m. If the corresponding

components along x and z were drawn they would have

the general form of the dispersed or relaxed equilibrium

as shown in Fig. 3 but it would present a strong dis-
continuity at x ¼ 0 and x ¼ p; this discontinuity is of

course impossible to realize, at least in a finite prepa-

ration time, and there will be some range of x around 0

and p where it will be impossible to eliminate the per-

pendicular component. To reduce the corresponding

signal oscillation one will need a selective saturation

prior to the stabilization sequence, with the usage of

some crushing gradients, as suggested in [5], eliminating
altogether any signal, useful or parasitic, coming from

the x ¼ 0, x ¼ p regions. This pre-saturation will be not

considered in the present article; but we will try to re-

duce as much as possible the extent of precession fre-

quencies where the perpendicular component cannot be

eliminated, and outside this band of frequencies we will

try to reduce as much as possible the residue of per-

pendicular magnetization. In this stabilized region, the
magnetization will then be almost aligned with m n! but

with a larger magnitude equal to the original M0 after

the preparation. It will, at that time, start a relaxation

process with the relaxation rate xk towards m n!, gen-

erating perhaps some blurring, as in any fast sequence,

but no artifact.
Fig. 6. When the nutation angle hk varies, the �cycle� rotation, from
echo k � 1 to echo k varies according to Eq. (8). The angle /k between

the rotation axis n!k and the axis z! varies, and also the rotation angle

Xk . In a new frame whose z! axis would stay aligned with nk! for all k, a
rotation with an angle d/k ¼ /kþ1 � /k would have to be added along

y!. If this corrective term is small enough the rotation in the new frame

is a pure precession and the angle between the magnetization and the

axis nk! would stay constant (adiabatic-like condition). This condition

is not easy to realize, but a more acceptable hypothesis is to suppose

that the corrective nutation d/k is small enough to permit the classical

linear approximation analysis of RF excitation in this new frame.
3. Stabilization of SSFP

As outlined in the introduction we intend to use for

stabilization of the refocused SSFP a generalization of

the linear ramping proposed by [8]. A better justification

of the results obtained by a linear ramping is given here.

This new justification relies on a change of frame, sim-

ilar to the one used in adiabatic RF excitations.

3.1. Slowly varying cycle rotation frame

In this section the nutation angle hk of each RF pulses

will be varied. This results in a rotation from echo

number k � 1 to echo number k, Rk, characterized by

variable rotation angle Xk and axis n!k. These values are

calculated in an analog manner to the constant nutation
case used in Eq. (8) but with c and s replaced by

ck ¼ cosðhk=2Þ and sk ¼ sinðhk=2Þ. One will note /k the

angle between the axis z! and the rotation axis n!k. One

reserves the non-indexed symbols X and / to the pa-

rameters of the constant echo-to-echo rotation induced

by the train of constant nutation h which follows the

stabilization period.
The echo number 0 is by convention the echo before
the first RF pulse, which is the time of the end of the flip

pulses in an FSE experiment. The first RF pulse is h1,
and the first echo to echo rotation (from echo 0 to echo

1) is characterized by X1, n!1 (see Fig. 1). The magneti-

zation at the first measured echo is noted M
!

1.

Let us define a varying cycle rotation frame whose z!0

axis stays aligned with the rotation axis n!k(Fig. 6). The

rotation axis stays in the ðx; yÞ plane, and the other
vectors composing the frame can be taken as x!0 ¼ v!k,

perpendicular to n!k in the ðx; yÞ plane, and y!0 ¼ y!.

One supposes that this frame is kept as the reference

from just after the time of echo k � 1, until the time of

echo k when the magnetization M
!

k is measured; then,

instantaneously, one switches to the the next frame rel-

ative to the cycle rotation from echo k to echo k þ 1.

That means that just after echo k � 1, one has to add a
corrective rotation along the y! axis with an angle

dk ¼ /k � /k�1: ð13Þ
This correction is to be applied for k ¼ 1 . . ., and with

the special value /0 ¼ 0, as one takes by convention the

original rotation axis aligned with z! at echo 0. One

assigns the index p to the first RF pulse having a nuta-

tion angle equal to the target value h, hp ¼ h; all pos-
terior RF pulses will have that nutation angle h. Hence
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from k ¼ p þ 1, onwards the correction rotation along
y! is nulled dk ¼ 0; k > p. In the cycle rotation frame,

the following sequence of rotations and measurement

(noted Sk for �sampling�) takes place: Ryðd1Þ;Rz0 ðX1Þ; S1;
Ryðd2Þ; . . . ; Sp�1;RyðdpÞ;Rz0 ðXpÞ; Sp, followed by Rz0 ðXÞ;
Spþ1;RzðXÞ . . ..

If one supposes that the rotation along y is negligible

in regard to the rotation along z!0
,

dk < Xk=kA; ð14Þ
with kA a coefficient which must be sufficiently large (for

instance greater than 10), the axis of the combined ro-
tation RyðdkÞRz0 ðXkÞ is almost collinear to z!0

and one

obtains easily the result that the magnetization stays

almost aligned with the axis of the cycle rotation if it

were aligned with it at the time origin (echo zero). The

condition (14) is similar to the definition of adiabatic

condition in MR excitation [11,17,18]. Unhappily, it

appears that this adiabaticity-like condition is too re-

strictive. Defining the sensitivity

wk ¼
o/k

oh
; ð15Þ

and approximating dk ¼ /k � /k�1 by dk ¼ wkðhk �
hk�1Þ, the condition (14) is realized if the rate of varia-

tion of the nutation angle h is small enough,

hk � hk�1 <
1

kA

Xk

wk
: ð16Þ

Unhappily by plotting Xðh;xÞ, according to Eq. (8),

and wðh;xÞ, which is found after some manipulation to

be equal to sinðxÞ=ð2 sin2ðX=2ÞÞ, on Fig. 7, one realizes

that the rate of variation of h should be very small

particularly for precession angles x close to zero (or pÞ.
The next level of approximation which is far less re-

strictive is to admit that the corrective rotations RyðdkÞ
are small enough for the parallel magnetization com-

ponent along z!0 ¼ n!k to stay constant and ’ 1, but
Fig. 7. Left the rotation axis in function of the nutation angle is shown for d

angle is around p=2. Also X is quasi constant and equal to 2x, for small h. Th
of / in regards of h, when x and h are small, impede the adiabatic-like, zero or

a reduced range of precession angle x. For the, then necessary, first order an

relatively constant and equal to 1=ð2 sinðxÞÞ.
without supposing that the perpendicular component of
M
!

k , noted e!k in the following, is null at all time; this is

typically the kind of approximation (first order ap-

proximation) one does for calculating the transverse

magnetization under the influence of a small (and of

short duration) RF field using the Bloch equations. Here

the RF field role is played by dk, and in the cycle rota-

tion frame the first order approximation of the perpen-

dicular component can be written

e!k ¼ Rz0 ðXkÞð e!k�1 þ v!dkÞ: ð17Þ

If ek is the complex value such that

e!k ¼ ReðekÞ v!þ ImðekÞ y!: ð18Þ
Eq. (17) can be more compactly written as a first order

equation in the complex variable e

ek ¼ expðjXkÞðek�1 þ dkÞ; ð19Þ
which in turn, after defining

uk ¼
Xk

i¼1

Xk; ð20Þ

and ek ¼ �k expðjukÞ, becomes

�k ¼ �k�1 þ eðjukÞdk:

Noting that e0 ¼ �0 ¼ 0, one obtains finally

�p ¼
Xp

k¼1

dk expðjukÞ: ð21Þ

If Xk were constant and equal for instance to the

value bXX, one would have uk ¼ bXXk and the above

equation would define the perpendicular magnetization

at the end of the preparation period as the Discrete

Fourier Transform of the sequence dk at the reduced

radial frequency �bXX. The left part of Fig. 7 shows that

this is indeed the case at least for small h, where we havebXX ’ 2x. Hence, at least for the beginning of a ramp up,
ifferent precession angles. It is large and close to p when the precession

e sensitivity w ¼ o/=oh is shown on the right. The very high sensitivity

der, approximation to be valid except for very slow ramp up and/or for

alysis it is interesting to note that the sensitivity o/=oh around h ¼ 0 is
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�k, at the precession angle x, is the Discrete Fourier
Transform of dk the first difference of the tilt angle / of

the cycle rotation axis, at the reduced radial frequency

�2x. Also the right part of the figure shows that at

small nutation angle again the sensitivity w is quasi

constant with the value w ¼ 1=ð2 sinxÞ. Hence, noting

the rate of variation of the nutation angle by

Dk ¼ hk � hk�1; ð22Þ
(with by convention h0 ¼ 0 and hence D1 ¼ h1), we ob-

tain

�pðxÞ ¼ 1

2 sinðxÞ
Xp

k¼1

Dk expðj2xkÞ: ð23Þ

We thus can express, for any precession angle x, the

perpendicular magnetization in terms of the discrete
Fourier transform of the first difference of the nutation

angle sequence hk.
Actually as 1= sinðxÞ is proportional to the Fourier

transform of a summation, the perpendicular magneti-

zation can be expressed directly as a function of the

Fourier transform of the sequence of nutation angle hk
but including the p þ 1th pulse hpþ1 which is equal to the

pth pulse hp. The obtained expression is in fact more
complicated than (23). Conversely because one has,

around x ¼ 
p=2, sinðxÞ ¼ 1 we can simplify (23) into

�pðxÞ ¼ 1

2

Xp

k¼1

Dk expðj2xkÞ; ð24Þ

making the perpendicular magnetization directly equal

(with a constant coefficient 0.5) to the Fourier transform

of the rate of change of nutation. For precession angles

approaching the critical precession angle 0 and p both

approximations (23), (24) diverge from the reality but in

the same amount, the first one (23) by excess in mag-

nitude, the other one (24) by default. For simplicity we
will adopt, in the following, the lighter model (24).

This first order approximation in the cycle rotation

frame probably justifies the linear hypothesis taken in

[8]. In the frequency regions around x ¼ 0 or x ¼ p, the
Fig. 8. The absolute value of the perpendicular component at the end of the st

with the linear approximation given by Eq. (24) which is valid around x ¼
Fourier transform result (23) is not valid, and only
simulation results will be useful.
3.2. Simulation results of a linear ramp

Fig. 8 shows with a linear scale and a logarithmic

scale (in decibels) the magnitude of the perpendicular

magnetization, and, for comparison, the results of the

linear approximation (24), when the nutation angle is a
linear ramp of 8 pulses h1 ¼ 1=8; . . . ; h7 ¼ 7=8; h8 ¼ 1,

for a stabilized h ¼ 1 rad. Note that as the last stabil-

ization pulse is already equal to h, the echo signal pre-

ceding it (of index 7) should be considered as already

stabilized; in the following, a preparation made of p RF

pulses describes a preparation sequence where the last

pulse has a nutation angle equal to the target rotation h,
and the echo preceding it (with index p � 1) presents
already the minimum error �; hence, there is actually

only p � 2 echo measures to disregard in this case.

To simulate the true perpendicular magnetization at

echo p, one calculates this magnetization for 512 equi-

distant values of x ranging from �p to p, by performing

the product of 3� 3 rotation matrices similarly to (9)

(Bloch equations). The original magnetization at echo 0

has a length one and is along the z! axis. The magne-
tization at echo p ¼ 8 is projected into the cycle rotation

frame v!; y!; n! corresponding to h ¼ 1 and that for each

x, to obtain �ðxÞ. For comparison the perpendicular

magnetization according to the approximate theory (24)

is calculated.

As can be appreciated from Fig. 8 the linear theory is

validated in a large part of the attenuated band of the

sinc response. One note that in this region both the
approximation and the reality presents lobes with an

amplitude decreasing in 1=x. When one increases the

length p of the ramp there is a contraction of all the

lobes, and a proportional addition of secondary lobes;

but the maximum ripples of the secondary lobes remain

somewhat constant and at a given precession angle x in

the stop band the ripple decrease very slowly according
abilization period, when using a linear ramp of length p ¼ 8, compared


p=2. Linear scale at left and logarithmic scale at right.



Fig. 9. Responses in the cycle rotation frame for preparations of length

8 (six echoes to be discarded). One, in dotted line, is the linear ramp

already shown in Fig. 8, the other one, in solid line, is a Kaiser window

with b ¼ 3. Although the center of main lobe is slightly wider for the

the b ¼ 3 window, the non-linearity in the first secondary lobe make

this last window actually better, and in the stop band where the linear

approximation becomes valid, the attenuation is much better.
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to a law in the order of 1=p when one increases the
duration p of the preparation. It is known in Finite

Impulse Response filter design that by accepting a larger

transition bandwidth one can have ripples amplitude

which decrease exponentially with p when using good

apodization window.

3.3. More flexible window

The Kaiser Bessel window [19] is the most flexible

window and gives result very close to the min–max op-

timum which would be obtained by the Dolph–Chebi-

shev window [20] which is more difficult to program. It

is governed by a parameter b which, in addition to the

length of the window, allows a compromise between the

width of the transition band and the ripple in the stop

band; For b ¼ 0 one obtains the boxcar window corre-
sponding to the linear ramp as tested in the previous

section. This Kaiser window will thus permit to gener-

alize the results just obtained by a linear ramp.

To design a Kaiser Bessel window, one first defines a

reduced time

sðkÞ ¼ ak þ b

k being in the present case the RF pulse index 1; . . . ; p. a
and b are adapted such that for the first pulse, k ¼ 1; one
has s ¼ �1 and for the last pulse, k ¼ p, s ¼ þ1. Then

the Kaiser window, to which one will identify the first
order difference of the nutation angle (22), is in the form

DðkÞ ¼ GI0ðb
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� s2ðkÞ

p
Þ ð25Þ

G being a static gain that one has to adapt such that,

after summation, the nutation of the RF pulse p is

hðpÞ ¼
Xp

k¼1

DðkÞ ¼ h: ð26Þ

In (25), I0 is the modified Bessel function of order 0 which

can be computed by series expansion [19] if necessary. As

said, the parameter b allows compromise between a

narrow main lobe but large ripple as obtained for b ¼ 0

(the boxcar window), or a wide main lobe and small stop

band ripple. For b ¼ 5 the first ripple is 1.2% of the main
lobe amplitude but at the price of a transition bandwidth

which is almost doubled. Also at these large values of b
the first pulse nutation hð1Þ ¼ Dð1Þ is very small and the

non-linearity of the exciter probably does not permit to

play faithfully all the pulses of the preparation. That is

why Fig. 9 compares the original 8 pulses linear ramp to

h ¼ 1 rad, with a 8 pulses Kaiser ramp with a b of only 3;

for this value of b, the main lobe of the magnetization
response is almost identical for the two preparations, but

when the first ripple of the linear (theoretical) prepara-

tion attains 10%, the first lobe of the Kaiser preparation

is only 2%. The simulation result of Fig. 9 which takes

into account the non-linearity of the Bloch equation,

justifies the approach taken.
3.4. From the cycle rotation frame back to the rotating

frame

In order to evaluate the true magnetization after

p � 1 pulses we had to rely on the Bloch equations which

are simply written in the original rotating frame x; y; z
and then decompose this magnetization M

!
p in the frame

( n!; v!; y!) of the echo to echo cycle rotation R. We

obtain along the rotation axis n! a component Mk, and
along the perpendicular plane ð y!; v!Þ a component that

we have noted with a complex number ep. The parallel

component will stay constant and gives a constant

transverse magnetization, or signal

MxyðxÞ ¼ MkðxÞnxðxÞ: ð27Þ
For k > p one has for the perpendicular component

of magnetization (19) ek ¼ ep expðjXðk � pÞÞ, but this

corresponds to a vector which is in the ð v!; y!Þ plane

(18), and after projecting this vector in the ð x!; y!Þ plane
one obtain

Mxyðx; kÞ ¼ ep expðjXðk � pÞÞ � ðnz þ 1Þ=2
þ ep expð�jðXðk � pÞÞ � ðnz � 1Þ=2: ð28Þ

Hence one has two artifacts positioned symmetrically

around the object, at position corresponding to 
X
along the encoding direction, with respective amplitude

jepjjðnz þ 1Þ=2j and jepjjðnz � 1Þ=2j.
4. Experimental results

When it was said in Section 2.3 that the dispersion

effect was not available anymore in refocused sequence,
that was counting without the unintended precession

and nutation angles dispersions which tend to render the
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artifacts less visible than predicted by the theory. And
indeed Epstein et al. [21] suggest to reintroduce some

dephasing in order to regain part of the natural stabil-

ization in the True FISP sequence. It is not guaranteed

though that this dispersion introduced artificially will

not be cancelled by a local gradient, making the artifacts

as strong as the ones shown here, where, on the con-

trary, all precautions have been taken in order to min-

imize the dispersion effects.
Fig. 10 was obtained by acquiring 31 images of a tap

water sphere (a ping-pong ball actually). The acquisition

gave 128� 128 pixels, interpolated to 256� 256, in a

square field of view of 28 cm. The object is a sphere in

order to reduce as much as possible any resonant fre-

quency gradients, and hence precession angle x gradi-

ents, in the object. The tap water rules out any

relaxation during the signal acquisition, but imposed a
long recovery period (6 s). The slice thickness was large

enough to guarantee that the object was contained en-

tirely in the flat portion of the RF pulse profile and thus

only one definitive nutation angle was to be considered:

60� in the following experiments. Each images was
Fig. 11. The experimental values in this figure, represented by crosses, diamon

the one shown in Fig. 10. The results on the left were obtained with a linear r

preparation. Both preparations were of length p ¼ 8 (six echoes to discard).

object and the two artifacts were obtained for each of the 32 different x. Th

amplitude of the object (crosses) and the amplitude of the two artifacts (squ

Fig. 10. This figure was obtained by collating, from left to right, the

central portion (along the read direction) of 32 different acquisitions of

a sphere of distilled water. The encoding direction is from top to

bottom. The nominal setting x ¼ p=2 is around the center of the

collated image (and correspond to a change of sign of the RF every

other pulse), x ¼ 0 and x ¼ p are nearby the right and left borders.

The theoretical position of the artifacts at 
XðxÞ (Eq. (8)) has been

overlaid. No ramping was used and at least one of the artifacts am-

plitude is in the same order of magnitude than the object.
acquired with a different central frequency. This variable
central frequency was such that the precession angle x
spanned an interval 0 to p when the acquisition number

varied from 0 to 31 (actually the central frequency was

kept constant, but a linear phase modulation was ap-

plied in function of the RF pulse index, and also the

receiving period index, to simulate this variable x). The

images were cropped to their central portion along the

read axis and collated. The central line of spheres rep-
resents then the reconstructed object and the two lateral

lines are the artifact with a position which should be

along a curve XðxÞ, with X ¼ 
p corresponding to the

borders of the field of view along the phase encoding

direction and X ¼ 0 to the central position. One verifies

that the curve XðxÞ which is overlaid fits rather nicely

the central positions of the artifacts. In the experiment

of Fig. 10 no ramping or preparation of any kind was
applied, and as expected in this case the artifacts are in

the same order of magnitude as the object. For other

experiments a linear or Kaiser ramp up was used, in

which case the artifacts are much lower in the attenuated

region (although still of high amplitude around x ¼ 0

and x ¼ p). For that reason the images are not shown in

fear of the difficulty in rendering the high dynamic of

grey level obtained. But for each acquisition a constant
circular region of interest was positioned (manually)

around the reconstructed object and around the two

artifacts; the average grey level was recorded, and these

values were plotted and compared to the theoretical

curves. Two unknown parameters, the receiver gain, and

the slight resonant frequency offset, were chosen ap-

propriately for each run of experiment (by run, it is

meant all experiments done the same day, after one
unique RF, and central frequency calibration) for scal-

ing and shifting the theoretical curves which were

otherwise obtained by the simulation of the first p ro-

tations and the use of the projection equations (27) and

(28). Fig. 11 shows the results of two such experiments,
ds and squares, have been obtained from two series of images similar to

amp preparation and the ones on the right were obtained with a Kaiser

For each experiment the average signal of a circular region around the

e continuous lines are obtained from numerical simulation and fit the

ares and diamonds).



34 P. Le Roux / Journal of Magnetic Resonance 163 (2003) 23–37
performed in the same run, and using a ramping of
length p ¼ 8 (six echoes discarded), for b ¼ 0 (linear

ramp) and b ¼ 3. This figure first shows that the fitting

between the theoretical curves and the measures is not

perfect, but is nevertheless convincing that the theory is

probably true, knowing all the experimental uncertain-

ties: there may still be some phase dispersion in the

object due to resonant frequency inhomogeneity, as can

be appreciated by the distortion of shape of the artifact
in Fig. 10 when x is around 0 or p. The figure clearly

shows by comparison of the two ramps that the im-

provements to be expected from using the Kaiser win-

dow are indeed achieved.
5. Discussion

Ramping is not new, particularly for stabilization of

FSE sequences. Alsop [22] noticing the improved signal

obtained in [23] where a constant echo amplitude from

the start of the echo train is obtained by variable profile

RF pulses, proposed a downward ramp of the nutation

angle (or downward ramp of the target echo amplitude);

his idea was to transfer the initial magnetization from

the axis x! to a position parallel to the axis n! (Alsop
calls it the pseudo-steady state). The explanation why

the downward ramp worked was not clear; some de-

velopment based on the slow variation of the cycle ro-

tation as used here would probably justify a large

collection of downward ramps: when the nutation angle

is high, close to 180� the fan picture of Fig. 2 or Fig. 4

has an aperture angle which is very small and the rota-

tion axis is almost parallel to the x! axis, where the
magnetization lies at the start, and that for all precession

angle x. When slowly reducing the nutation angle the

fan opens up and the magnetization follows the local

rotation axis if the condition (14) is respected. One must

realize that when ramping down as in the case of [22] for

FSE, it is difficult to guarantee the respect of condition

(14) when one is using selective pulses: if the condition is

respected at the center of the slice, this does not imply
that it is respected in another part of the slice, particu-

larly as the borders where the nutation angle is small.

Contrarily to that, the ramping up for SSFP stabiliza-

tion proposed here or even in [8], is quite immune to a

scaling. Indeed if one were to stabilize a SSFP train with

a stable nutation angle gh rather than h one would find,

using (25) and then (26), a stabilization sequence which

will be itself multiplied by g! This will work in reality as
long as the linear approximation is not broken. In that

respect the Kaiser preparation with b ¼ 3 resists more

than the linear ramp and can still be used with a p ¼ 8

and for a nutation angle h ¼ 2. One can even ramp up to

a h ¼ p, obtaining an SSFP sequence which behaves like

an FSE sequence in term or relaxation, if one admit

to lengthen a bit the preparation period. In the other
direction, both ramping up resist perfectly to a scaling
down of the RF chain gain: the smaller the nutation

angle the better they behave and thus there is no prob-

lem in using these ramping up with selective pulses. The

effectiveness of the linear ramp up of [8] has recently

been verified experimentally on phantoms and with

volunteers in [24].

Another recent publication is also worth mentioning;

it may seem that the FSE sequence has never been used
in its refocused version. Actually yes; the TIDE se-

quence proposed in [25], and pertaining in appearance

to the refocused SSFP sequence, can be seen as the re-

focused FSE sequence prepared by a (long) linear ramp-

down of the nutation angle. Assuming that condition

(14) is valid during this ramp-down the magnetization is

left along the rotation axis as in Fig. 4. But at least for

one half the x this position is in reverse of the SSFP
equilibrium it will reach after full relaxation (Fig. 5).

This smooth transition from a refocused FSE sequence

towards a refocused SSFP sequence may have interest

for its own sake; but seen from the point of view of rapid

refocused SSFP stabilization, it is efficient only in half of

the possible x. Besides, as with other previously pro-

posed SSFP stabilization schemes [1], this demands a

physical T ¼ TR=2 interval between two successive
pulses and this may induce a lengthening of the TR.

Also the use of high, close to p radian nutation angles at

the start of the sequence may increase the Specific Ab-

sorption Rate and lengthen the time necessary to play

the RF pulses.

Finally, a very recent article [26] tends to support the

approach taken here to embed the two sequences FSE,

and SSFP in the same framework by considering the
cycle from center of precession period to center of

precession period.
6. Conclusion

The results of [8] have been demonstrated and gen-

eralized. In the process of demonstrating the validity of
the SSFP stabilization by ramping up, one has also

demonstrated some results pertaining to FSE and pro-

posed simplified equations to describe the relaxation

processes which may be useful both for SSFP and FSE.

The faster stabilization of SSFP may help obtaining

other kind of image contrast.
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Appendix A

The perturbation theory of eigenvalues and eigen-

vectors will be used here in the classical mathematic

sense [27], more than in the quantum physics approach

[18] which deals with unitary operators. In case of no

relaxation the vectors v1 ¼ ð v!þ j y!Þ=
ffiffiffi
2

p
and v2 ¼

ð v!� j y!Þ=
ffiffiffi
2

p
are eigenvector of the 3D real matrix

representing the rotation R with eigenvalue k ¼ expðjXÞ
and k ¼ expð�jXÞ respectively, and the vector n! is ei-

genvector with eigenvalue 1. Let U the unitary matrix

form by these vectors, for instance U ¼ ½v1jv2jn� and K
the diagonal matrix of eigenvalues diagðkk; 1Þ.

We use the fact that, with relaxation, the new matrix

A is not very different from the original rotation:

A ¼ ð1� OÞRð1� OÞ;

A ’ R� ðORþ ROÞ

with O ¼ diagðx2T ;x2T ;x1T Þ, the variation dA ¼ �
ðORþ ROÞ is a priori small if the repetition time is small

in comparison to T1, T2. One will use a classical proce-

dure to approximate the new eigenvalues and eigenvec-

tors, similar to the stationary perturbation theory that is

reminded rapidly. If one knows the eigenvector ui of an
operator A of order n with eigenvalues ki, Aui ¼ uiki. In

which case one can express the operator A by

A ¼
Xn

i¼1

kiuiu	i : ðA:1Þ

To find out the new eigenvectors of Aþ dA one writes

the new eigenvectors ui þ dui relative to a new eigen-

value ki þ dki. One must have:

ðAþ dAÞðui þ duiÞ ¼ ðui þ duiÞðki þ dkiÞ:
One supposes that the variations dui dki are small and

neglect second order terms in the previous equality (and

making use of the fact that ui is eigenvector of A):

AðduiÞ þ ðdAÞui ¼ ðduiÞki þ uiðdkiÞ:
One has n such equations i ¼ 1; . . . ; n. Multiplying first

by u	i each one of them (and using (A.1) and the
orthogonality of the ui):
u	i ðdAÞui ¼ dki: ðA:2Þ
Multiplying now the same equation by u	j :

kju	j ðduiÞ þ u	j ðdAÞui ¼ u	j ðduiÞki:

And if one express the variation of the eigenvector dui
by a linear combination of the original eigenvector:

dui ¼
X
j

bijuj

one finds:

bij ¼
u	j ðdAÞui
ki � kj

: ðA:3Þ

Applying this procedure to the present case turns out

to be easy. One has dA ¼ �ðORþ ROÞ with R the ori-

ginal operator and O a diagonal, real matrix; in this

condition one finds:

u	j ðdAÞui ¼ �ðki þ kjÞðu	jOuiÞ: ðA:4Þ

Then one finds from (A.2) with i corresponding to the

rotation axis n! (k ¼ 1Þ
dk ¼ �2n	On:

Hence the new eigenvalue along this axis:

k0 ¼ 1� 2T 	 ðx1n2z þ x2n2xÞ:
This attenuation corresponds to a time interval 2T , one
can model this attenuation by a relaxation rate;

xjj ¼ x1n2z þ x2n2x :

In the same way considering (A.2) with v1 corre-

sponding to k ¼ expðjXÞ, one finds that the new eigen-

value is:

k0 ¼ ejXð1� 2v	1Ov1Þ ¼ ejXð1� ytOy � vtOvÞ;
which after easy development leads to an equivalent

relaxation rate:

x? ¼ x2

2
þ x1n2x þ x2n2z

2
:

The conjugate eigenvalue must stay conjugate (A is

real) and thus corresponds to the same relaxation

process. The operator A is a damped rotation in a

plane with damping x? while the component along

the axis is damped with the relaxation rate xjj. The

question is: does the axis of the rotation changed a

lot? For accessing that let us use (A.3) with the index

i corresponding to n! and the index j corresponding
to v1:

bnv1 ¼ ð1þ ejXÞðv	1OnÞ=ð1� ejXÞðyOnÞ=ðj tanðX=2ÞÞ;

bnv1 ¼ �ð1þ ejXÞðv	1OnÞ=ð1� ejXÞ

¼ ðvtOnÞ=ðj
ffiffiffi
2

p
tanðX=2ÞÞ

and the conjugate value for bnv2. Finally:
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n0 ¼ nþ vtOn
tanðX=2Þ y

with vtOn ¼ ðx2 � x1ÞT ðnxnzÞ, one has a component of

the new rotation axis along the y axis which is:

n0y ¼
nxnz

tanðX=2Þ � ðx2 � x1ÞT :

The coefficient Kðx; hÞ ¼ nxnz= tanðX=2Þ is a compli-

cate function, but most evidently it will be large for

small nutation angle h and small precession angle x
where the rotation angle X is small. One simple rule is,

for instance, the following: if one excludes around x ¼ 0

and x ¼ p a segment of 0.175 rad (
10�), one has al-

ways K < 2. As typically x2T is in the order of 0.1 or
below the rotation axis n0 should not be tilted towards y
by more than 10�. One will suppose that the axis of the

(damped) rotation is the axis of the original rotation.

Hence, for studying the T1 recovery one will suppose

that the original eigenvector matrix U stays eigenvector

matrix of the relaxed operator A and one will project all

vector on this new basis. Taking into account the T1
recovery during the precession periods, the magnetiza-
tion recurrence equation between echo k � 1 and k is

(supposing 1� E1 ’ x1T ):

Mk ¼ ERE �Mk�1 þ RE � ðx1T Þzþ ðx1T Þz:

Projecting this equation in the eigenvector frame by

Mk ¼ Umk, z ¼ Uf, and neglecting second order terms,

one obtains:

mk ¼ K0mk�1 þ Kðx1T Þf þ ðx1T Þf: ðA:5Þ

This correspond to three decoupled first order systems.

Two of them correspond to the perpendicular compo-

nents y; v. But again if the rotation angle X is large en-

ough there is one or more turns of rotation in one
relaxation time 1=x? and the component of the sta-

tionary magnetization along the y; v plane will be very

small. In first approximation one will thus consider only

the component along the rotation axis n! which one find

from the third line of (A.5). The component of z! along

n! is nz, and calling m the component of M1 along this

same axis, one has

mð1� ð1� 2T 	 ðx1n2z þ x2n2xÞÞÞ ¼ 2ðx1T Þnz;

m ¼ x1

x1n2z þ x2n2x
nz:
Appendix B

In [28], Hennig admitted not being able to demonstrate

that the signal of FSE (or CPMG) sequence is sinðh=2Þ.
Here is one demonstration following Fig. 4 and Eq.

(8). The original magnetization along x is first projected

�by phase dispersion� along n!, with a magnitude nx; to
calculate the signal it generates one has to project that
magnetization on x, hence the original magnetization at

precession angle x gives rise to a signal increment n2xðxÞ.
The global signal is then

S ¼
Z p

�p
n2xðxÞdx

or

S ¼
Z

dxs2=ðs2 þ c2 sin2 xÞ

¼
Z

ð1þ tan2 xÞdx=ð1þ tan2 x=s2Þ;

or

S ¼
Z þ1

�1

du
1þ u2=s2

with u ¼ tanx, and now with v ¼ u=s and v ¼ tan a:

S ¼ s
Z 1

�1

dv
1þ v2

¼ s:
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